

EAЭC N RU Д-RU.PA01.B.52175/21

ТУ 4862-001-85523656-2015 Код ТН ВЭД ЕАЭС 8415830000 ТР ТС 010/2011 ТР ТС 004/2011 ТР ТС 020/2011

ПАСПОРТ ВЕНТИЛЯТОР КРЫШНЫЙ NAVEKA VR(S)

Назначение и область применения

Вентилятор представляет собой механическое устройство, предназначенное для перемещения чистого и сухого воздуха по воздуховодам систем кондиционирования и вентиляции и создающее необходимый для этого перепад давлений (на выходе и входе вентилятора). Недопустимо перемещение липких, агрессивных (пары кислот, щелочей...) и взрывоопасных сред.

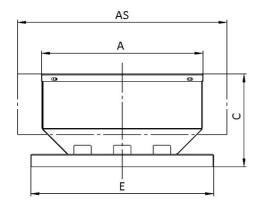

Температура перемещаемого воздуха указана в таблице (без образования конденсата).

Вентиляторы VR устанавливаются на кровле в предварительно смонтированный монтажный стакан (см. п. 6).

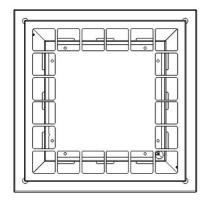
Рабочее колесо вентиляторов имеет назад загнутые лопатки правого направления (по часовой стрелке, если смотреть на вентилятор со стороны всасывания).

Корпус изготавливается из оцинкованной стали. **Опционально, для увеличения стойкости к атмосферным осадкам корпус может быть покрыт порошковой краской.** Соединение деталей корпуса производится с помощью саморезов или заклепок.

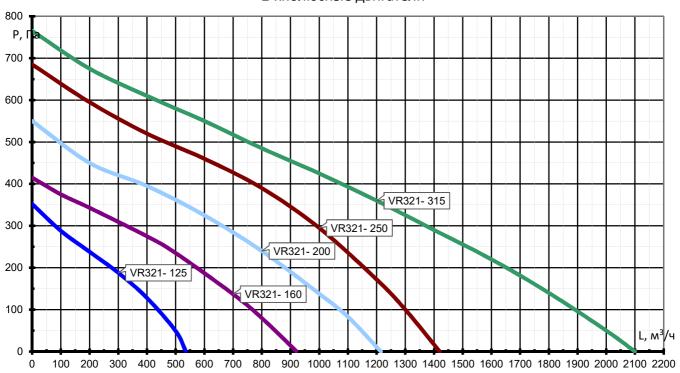
Условное обозначение:

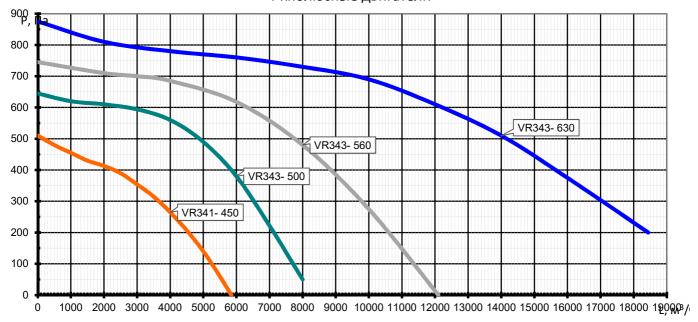


Номинальный диаметр подключения, указанный в наименовании, отражает диаметр воздуховода, который стыкуется к вентилятору. К вентилятору воздуховод присоединяется посредством адаптера при применении обычного монтажного стакана. В случае применения шумоглушащего монтажного стакана комплектация адаптером не требуется — в нижней части стакана уже предусмотрены посадочные отверстия под фланец воздуховода. Крепление воздуховода к адаптеру или шумоглушащему стакану производится круглым фланцевым соединением.


Основные технические параметры

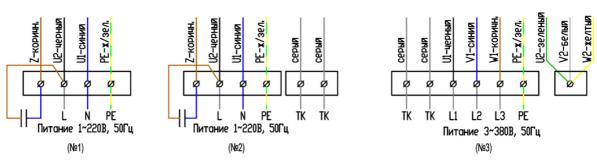
Модель	n, об/ми	Шум, дБ(А)		Вес ,кг		Мощн., Вт	Ток, А	Напр., В	Темпера- тура	Схема подкл.
	Н	VR	VRS	VR	VRS				воздуха, °С	
VR321- 125	2350	47	41	7,4	12,4	52	0,23	220	-30 +65	Nº 1
VR321- 160	2700	51	45	9,0	14,7	85	0,38	220	-30 +45	Nº 1
VR321- 200	2650	51	44	10,7	18,1	135	0,6	220	-30 +55	Nº 1
VR321- 250	2500	53	46	12,1	19,8	210	0,93	220	-30 +70	Nº 1
VR321- 315	2700	53	45	15,0	25,0	225	1,0	220	-30 +60	Nº 1
VR341- 450	1260	56	49	51,8	62,7	690	3,1	220	-40 +55	Nº 2
VR343- 500	1370	59	52	71,9	86,8	1520	2,91	380	-40 +70	№ 3
VR343- 560	1390	66	58	86,2	101,7	1950	3,98	380	-40 +60	№ 3
VR343- 630	1345	69	65	104,9	123,9	3570	6,63	380	-40 +40	№ 3


Габаритные размеры вентилятора


Модель	Α	AS	С	E
VR321- 125	321	421	187	368
VR321- 160	361	461	197	400
VR321- 200	401	501	234	406
VR321- 250	425	525	232	433
VR321- 315	492	592	268	466
VR341- 450	832	932	405	724
VR343- 500	954	1054	489	767
VR343- 560	999	1099	491	813
VR343- 630	1135	1235	534	912

Аэродинамические характеристики 2-хполюсные двигатели

4-хполюсные двигатели


Электроподключение

Электроподключения должен проводить только <u>квалифицированный</u> персонал, имеющий необходимый допуск к выполнению данных работ. Все элементы, требующие электроподключения, имеют электросхемы, в соответствии с которыми необходимо произвести подключение. Схемы продублированы на корпусах соответствующих элементов.

На линии питания вентилятора необходимо установить устройство тепловой защиты, которое должно быть настроено на номинальный ток двигателя. Термоконтакты, выведенные в клеммную коробку вентилятора необходимо подключить к системе управления таким образом, чтобы размыкание данных контактов приводило к отключению питания, а возобновление питания было возможно только вручную – после проверки состояния двигателя.

Электросхемы подключения вентиляторов

Ниже приведены рекомендуемые сечение вводного кабеля и номинал автоматического выключателя. Данные значения носят рекомендательный характер и должны подбираться в соответствии с ПУЭ - по типу применяемого кабаля и по условиям его прокладки.

Модель	Сечение вводного кабеля	Вводной автоматический выключатель
VR321- 125	3*1,5 mm² (L, N, PE)	1P C6
VR321- 160	3*1,5 mm² (L, N, PE)	1P C6
VR321- 200	3*1,5 mm² (L, N, PE)	1P C6
VR321- 250	3*1,5 mm² (L, N, PE)	1P C6
VR321- 315	3*1,5 mm ² (L, N, PE)	1P C6
VR341- 450	3*1,5 mm² (L, N, PE)	1P C6
VR343- 500	5*1,5 mm ² (L1, L2, L3, N, PE)	3P C6
VR343- 560	5*1,5 mm² (L1, L2, L3, N, PE)	3P C6
VR343- 630	5*1,5 mm ² (L1, L2, L3, N, PE)	3P C10

Запуск, наладка, эксплуатация, техническое обслуживание и меры безопасности

Запуск должен производить специально обученный персонал. Перед запуском необходимо проверить правильность монтажа и электроподключений, убедится, что питающее напряжение соответствует номинальным параметрам. После запуска необходимо проверить рабочие токи электродвигателей и сравнить их с номинальными. Если рабочие токи превышают номинальные значения, дальнейшая эксплуатация запрещена. Завышение рабочих токов электродвигателей центробежных вентиляторов может быть связано с заниженным сопротивлением сети (как следствие — завышенные расходы). В данном случае необходимо снизить расход воздуха до расчетных параметров. При использовании регуляторов скорости, необходимо ограничивать минимальную скорость вращения на таком уровне, чтобы вентилятор работал без перегрева.

При выводе на рабочую точку не допускается чрезмерное снижение частоты вращения посредством частотного преобразователя. Не рекомендуется снижать частоту ниже 30 Гц, так как это может существенно снизить ресурс работы двигателя.

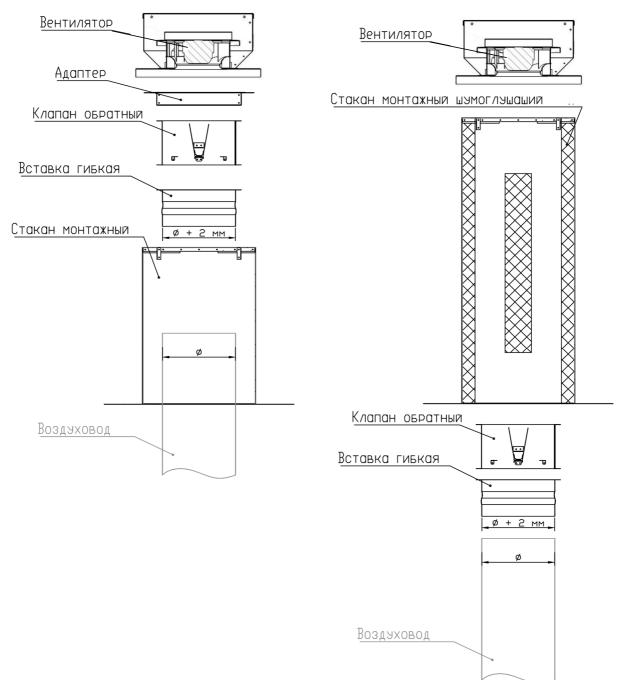
При первом запуске и испытании вентилятора, а также после вывода его на рабочую точку, помимо контроля токов, необходимо осуществлять периодическую проверку температуры.

Наладку необходимо проводить согласно пособию к СНиП 3.05.01-85 и другим нормативным документам.

Необходимо регулярно проводить осмотры и техническое обслуживание оборудования.

Ресурс работы (Показатель надежности): 40 000 часов.

Вентиляторы должны эксплуатироваться во взрывобезопасных помещениях. В случае перемещения влажного воздуха на стенках воздуховодов и элементах крышного вентилятора может образовываться конденсат. Необходимо предусмотреть места сбора и отвода конденсата.


ВНИМАНИЕ! Для сохранения гарантийных обязательств, после запуска необходимо составить отчет с указанием рабочих параметров установки (напряжение, токи, расход воздуха), времени проведения пусконаладочных работ, ответственного лица (с подписью).

Хранение и транспортировка

Вентиляторы транспортируются в собранном виде. Запрещается поднимать вентилятор за клеммную коробку. Вентиляторы консервации не подвергаются.

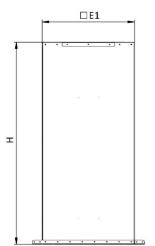
Опциональные принадлежности

В зависимости от того какой выбран способ монтажа могут быть различные варианты комплектации опциями. Ниже приведено два примера оснащения в зависимости от выбранных монтажных стаканов.

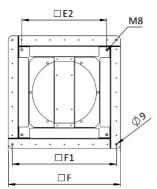
Ниже приведено более подробное описание основных опциональных компонентов.

Стакан монтажный

Стакан монтажный предназначен для установки крышного вентилятора. Изготавливается из оцинкованной стали. Стакан может быть выполнен в шумоглушащем исполнении. В этом случае стенки стакана покрыты слоем тепло-шумоизоляции. Кроме того, внутри устанавливается кулиса


для шумоглушения. Если стакан без изоляции, то, для предотвращения конденсации на его стенках, необходимо произвести наружную изоляцию.

Так как шумоглушащий стакан имеет в проеме кулису, то сетевые элементы не могут быть закреплены непосредственно к вентилятору (как в случае со стандартным стаканом), поэтому с нижней части шумоглушащего ста-


кана предусмотрено круглое подключение для фланцевого сетевого компонента (обратного клапана, гибкой вставки, фланца-ниппеля...) – адаптер в данном случае не нужен. Крепление монтажного стакана осуществляется посредством металлического

кана – посредством саморезов, заклепок или

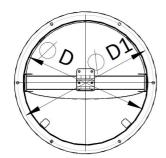
профиля. Крепление профиля к корпусу ста-

болтового соединения. Монтажный стакан после установки должен быть тщательно герметизирован. При креплении вентилятора к монтажному стакану необходимо использовать шайбы с резиновой прокладкой.

Модель	E1	E2	F	F1
VR321- 125	358	322	458	418
VR321- 160	390	354	490	450
VR321- 200	396	360	496	456
VR321- 250	423	387	523	483
VR321- 315	456	420	556	516
VR341- 450	714	678	814	774
VR343- 500	757	721	857	817
VR343- 560	803	767	903	863
VR343- 630	902	866	1002	962

Н = 500 мм – для стандартного стакана Н =1000 мм – для шумоглушащего стакана

Адаптер для крышного вентилятора


Адаптер предназначен для того, чтобы к вентилятору присоединить сетевые элементы (обратный клапан, гибкую вставку, фланец воздуховода...). Адаптер изготавливается из оцинкованной стали. С верхней (квадратной) стороны адаптера предусмотрены четыре отверстия для фиксации с корпусом вентилятора и монтажного стакана.

Клапан обратный

Обратный клапан предназначен для перекрытия потока воздуха при неработающем вентиляторе. Обратный клапан – лепесткового типа. Монтаж осуществляется на адаптер крышного вентилятора или непосредственно на шумоглушащий монтажный стакан. Ось клапана должна быть направлена вертикально.

Модель	n x d	D	D1	D2
VR321- 125	6 x 7	125	145	163
VR321- 160	6 x 7	160	180	203
VR321- 200	6 x 7	200	220	240
VR321- 250	6 x 7	250	270	290
VR321- 315	6 x 7	315	335	355
VR341- 450	8 x 9	450	479	500
VR343- 500	8 x 9	500	529	550
VR343- 560	8 x 9	560	589	610
VR343- 630	8 x 9	630	659	680

Вставка гибкая

Вставка гибкая предназначена для снижения передачи вибраций от вентилятора к воздуховоду.

С одной стороны гибкая вставка имеет фланец для крепления, который подходит к адаптеру вентилятора, обратному клапану или непосредственно к шумоглушащему монтажному стакану. С противоположной стороны у гибкой вставки муфтовое подключение для стыковки с круглым воздуховодом. При этом диаметр муфты на два миллиметра больше диаметра воздуховода для нормальной посадки с наружи воздуховода.

Фланец-ниппель

Фланец-ниппель предназначен для осуществления подключения круглого воздуховода в элементам крышного вентилятора (адаптеру, обратному клапану или шумоизолированному монтажному стакану).

С одной стороны имеется фланец, а с противоположной стороны - ниппельное подключение для стыковки с круглым воздуховодом. При этом диаметр ниппеля на два миллиметра меньше диаметра воздуховода для нормальной посадки внутрь воздуховода.

Гарантийные обязательства

Производитель гарантирует соответствие технических характеристик оборудования вышеуказанным значениям. На данное устройство гарантийный срок составляет 2 года со дня отгрузки. Га-

рантийный срок может быть расширен до 5 лет при проведении периодического технического обслуживания специалистами завода-изготовителя или аккредитованной производителем организацией.

Гарантийные обязательства выполняются только при обязательном техническом обслуживании вентиляционного оборудования.

Гарантия не распространяется на расходные материалы и элементы, вышедшие из строя в результате несоблюдения условий: транспортировки, монтажа, наладки, модификации и эксплуатации оборудования, а также если оборудование подключается не к штатной системе управления или в случае вмешательства в конструкцию без согласования с заводом изготовителем.

В случае обнаружения неисправности устройства, следует составить описание неисправности в форме рекламации https://progress-nw.ru/garantiya-i-servis и отправить вместе с копией данного паспорта и отчетом о запуске в сервис-центр. Услуги по транспортировке неисправных узлов до сервис-центра оплачиваются заказчиком.

При рассмотрении рекламации и проведении диагностики неисправности сервис-центр вправе запросить дополнительную информацию о характере неисправности (фотографии элементов, а также документацию, подтверждающую окончание монтажа, проведение пуско-наладочных работ и эксплуатации на надлежащем уровне). Отказ от выдачи такого рода документации может свидетельствовать о нарушениях в ходе данных этапов.

В случае невозможности принятия решения о причинах неисправности по предоставленным данным в течение пяти рабочих дней, Покупатель за свой счёт, организовывает демонтаж и доставку устройства в сервисный центр для дальнейшего обследования.

Срок выдачи технического заключения составляет 10 (десять) рабочих дней после составления акта о поступлении в ремонт. Срок выдачи заключения может быть продлен при необходимости проведения дополнительного обследования.

Свидетельство о приемке

Вентилятор крышный ническим условиям и признан годным к эксплуатации.	соответствует действующим тех-
Дата «» 20г	
Подпись ОТК	
М.П.	

